Acceleration measurement through hardware implementation on FPGAS
Implementación en hardware para la medición de la aceleración usando FPGA
Main Article Content
This paper presents a hardware implementation for the acceleration measurement using the MEMS ADLX355 accelerometer in FPGA (Field Programmable Gate Array). The hardware design is implemented using the hardware description language VHDL. The acceleration data are sent from the ADLX355 sensor to the FPGA using the I2C communication protocol. A UART communication interface is used for the transmission of measurement data from the FPGA to the computer. The design is synthesized on the FPGA 10CL025YU256I7 and verified in hardware using the Intel® Cyclone 10LP development board. The synthesis results show that the acceleration measurement on the Intel® board using one and two ADLX355 sensors is 460 LUTs, 290 registers and 234 MHz, and 852 LUTs, 526 registers and 234 MHz, respectively. The results show that the FPGA-based implementation outperforms the microcontroller-based implementation in execution time.
Downloads
Article Details
Sharshar, A., Fayez, A., Ashraf, Y. y Gomaa, W. (2021). Activity With Gender Recognition Using Accelerometer and Gyroscope. 15th International Conference on Ubiquitous Information Management and Communication, pp. 1-7. DOI: https://doi.org/10.1109/IMCOM51814.2021.9377388
Sharma, A. y Nanda, S. (2020). Timely detection of Seismic waves in Ground motion data using Improved S-Transform, 5th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE), pp. 1-9. DOI: https://doi.org/10.1109/ICRAIE51050.2020.9358363
Mahmood, M., Celik, Z. y Butler, P. (2017). Wafer-level packaged flexible and bendable MEMS accelerometer for robotics and prosthetics, IEEE Sensors Applications Symposium (SAS), pp. 1-5. DOI: https://doi.org/10.1109/SAS.2017.7894033
Li, C., Yang, B., Zheng, X., Sun, Z., y Zhou, L., (2022). A Seismic-Grade Optical MEMS Accelerometer with Force Feedback Control, 29th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS), pp. 1-8. DOI: https://doi.org/10.23919/ICINS51784.2022.9815378
Haro, M., Ding, X. y Elghazouli, A. (2021). MEMS-based low-cost and open-source accelerograph for earthquake strong-motion. Engineering Structures, vol 230. DOI: https://doi.org/10.1016/j.engstruct.2020.111675
Julius, A. y Sunardi, B. (2014). Earthquake response of storey building in Jakarta using accelerographs data analysis. DOI:1658. 10.1063/1.4915034. DOI: https://doi.org/10.1063/1.4915034
Qi, M., Bai, C., Wang, Y y Qiao, D. (2020). A Two-ASIC Front-End for MEMS Accelerometers, IEEE 15th International Conference on Solid-State & Integrated Circuit Technology (ICSICT), pp. 1-3. DOI: https://doi.org/10.1109/ICSICT49897.2020.9278017
Vita, A., Domenico, G., Femia, A., y Benedetto, L., (2019). Embeddable Circuit for Orientation Independent Processing in Ultra Low-Power Triaxial Inertial Sensors, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 6, pp. 1124-1128. DOI: https://doi.org/10.1109/TCSII.2019.2928476
Jiss, K y Johnson, N., (2014). Design and characterisation of FPGA based angular accelerometer, International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE).
Tukiran, Z., Ahmad, A., Huda, N. y Muharam, A., (2020). Implementation of Acceleration Measurement on FPGA platform for Real-time Monitoring Application, IEEE Student Conference on Research and Development (SCOReD). DOI: https://doi.org/10.1109/SCOReD50371.2020.9251010
Perez, A., Morales, R., Rangel, J. y Morales, C., (2018). Real Time Monitoring of 3 Axis Accelerometer using an FPGA Zynq–7000 and Embedded Linux through Ethernet, 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE).
Zongwei, L., Xingyin, X., Xionga, X., Hana, K., Ning, C. y Chang, Y. (2017) “Design of a high precision digital interface circuit for capacitive MEMS accelerometers with floating point ADC, Integration, vol. 59, pp. 247–254. DOI: https://doi.org/10.1016/j.vlsi.2017.05.008
Bhogadi, L., Bhushana, S. y Gottapu, R., (2015). MicroBlaze implementation of GPS/INS integrated system on Virtex–6 FPGA,” SpringerPlus, vol. 4, no. 629. DOI: https://doi.org/10.1186/s40064-015-1367-y
Douglas, J.; Seyedi, D.; Ulrich, T.; Modaressi, H.; Foerster, E. & Pitilakis, K (2015). Evaluation of seismic hazard for the assessment of historical elements at risk: description of input and selection of intensity measures. Bulletin of Earthquake Engineering, vol 13, pp. 49-65. DOI: https://doi.org/10.1007/s10518-014-9606-0
Cheng, P. & Oelmann, B. (2010). Joint-Angle Measurement Using Accelerometers and Gyroscopes- a survey, IEEE Transactions on Instrumentation and Measurement, vol 59, pp. 404-414. DOI: https://doi.org/10.1109/TIM.2009.2024367
Analog Device (2016), Low Noise, Low Drift, Low Power, 3-Axis MEMS Accelerometers ADXL355.
Kumari, S., y Gayathri, C. (2017). Interfacing of MEMS motion sensor with FPGA using i2c protocol. International Conference on Innovations in Information Embedded and Communication Systems (ICIIECS). DOI: https://doi.org/10.1109/ICIIECS.2017.8275932
Mireles, R., Rincon, I., y Ambrosio, R. (2010). Análisis y caracterización de un acelerómetro capacitivo fabricado com tecnología polymump’s. Superficies y Vacío, 23 Ed, por la Sociedad Mexicana de Ciencia y Tecnología de Superficies y Materiales, pp. 26–31.
Montes, F. (2019). Acelerómetros triaxiales: análisis de señales y aplicaciones físicas. Universidad Autónoma de Chihuahua, Facultad de Ingeniería, Maestria en ciencias básicas.
Kirbas, I. (2019). Developing a signal similarity analyse software for accelerometer sensor data, vol 13, pp.172-179.
Texas Intruments. (2015). Understanding the I2C Bus. SLVA704. Recuperado de https://www.ti.com/lit/an/slva704/slva704.pdf
Analog Devices. (2018). Low Noise, Low Drift, Low Power, 3-Axis MEMS Accelerometers. Recuperado de https://www.analog.com/media/en/technical-documentation/data-sheets/adxl354_355.pdf