Management model for attention and response to ransomware attacks in the networking area

Modelo de gestión para la atención y respuesta ante ataques de ransomware en el área de networking

Main Article Content

Vanessa García Pineda Institución Universitaria Instituto Tecnológico Metropolitano
Edison Andrés Zapata Ochoa Institución Universitaria Instituto Tecnológico Metropolitano
Juan Camilo Gallego Gómez Institución Universitaria Instituto Tecnológico Metropolitano
Luis Alberto Flórez Laverde Institución Universitaria Instituto Tecnológico Metropolitano
Jackeline Andrea Macías Urrego Institución Universitaria Instituto Tecnológico Metropolitano
Abstract

In the current era of technological advances, the frequent use of cloud services by organizations and companies has provided agility and convenience to users and collaborators. However, this trend entails the exposure of data of both users and organizations, making them vulnerable to cyber-attacks, mainly ransomware, which has raised growing concerns about data security. In response to this threat, organizations have recognized the importance of taking steps to protect data and prevent cyber-attacks. This study proposes a management model for responding to ransomware attacks in network environments. The methodology is divided into two phases: literature review, model review and formulation. The results identify key variables such as artificial intelligence techniques, predictive models, and security monitoring tools. The discussion highlights the effectiveness of the model in early detection and prevention of attacks, and the importance of staff training. Despite its limitations, the model provides a robust framework to mitigate risks and ensure operational continuity. This study contributes significantly to the improvement of cybersecurity in organizational networks, offering a comprehensive and adaptable approach to ransomware threats.

Keywords

Downloads

Download data is not yet available.

Article Details

Author Biographies View

Vanessa García Pineda, Institución Universitaria Instituto Tecnológico Metropolitano

Docente tiempo completo e investigadora del Instituto Tecnológico Metropolitano. Ingeniera en Telecomunicaciones y Magíster en gestión de innovación tecnológica, cooperación y desarrollo regional.

Edison Andrés Zapata Ochoa, Institución Universitaria Instituto Tecnológico Metropolitano

Docente e investigador del Instituto Tecnológico Metropolitano. Msc Automatización y Control.

Juan Camilo Gallego Gómez, Institución Universitaria Instituto Tecnológico Metropolitano

Ingeniero Networking - Especialista en Ciberseguridad. Profesor e investigador del del Instituto Tecnológico Metropolitano.

Luis Alberto Flórez Laverde, Institución Universitaria Instituto Tecnológico Metropolitano

Ingeniero de Telecomunicaciones, Magíster en gestión de innovación tecnológica, cooperación y desarrollo regional.

Jackeline Andrea Macías Urrego, Institución Universitaria Instituto Tecnológico Metropolitano

Docente e investigadora del Instituto Tecnológico Metropolitano. Ingeniera de Telecomunicaciones, Magíster en gestión de innovación tecnológica, cooperación y desarrollo regional.

References

Al Duhayyim, M., G. Mohamed, H., Alrowais, F., N. Al-Wesabi, F., Mustafa Hilal, A., & Motwakel, A. (2023). Artificial Algae Optimization with Deep Belief Network Enabled Ransomware Detection in IoT Environment. Computer Systems Science and Engineering, 46(2), 1293–1310. https://doi.org/10.32604/csse.2023.035589

Anand, S., & Ganeshwari, A. (2022). Enhancing Security for IoT Devices using Software Defined Networking (SDN). 2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), 130–137. https://doi.org/10.1109/DISCOVER55800.2022.9974896

Beltrán, Ó. A. (2005). Revisiones sistemáticas de la literatura. Revista Colombiana de Gastroenterología, 20, 60–69.

Berrueta, E., Morato, D., Magaña, E., & Izal, M. (2022). Crypto-ransomware detection using machine learning models in file-sharing network scenarios with encrypted traffic. Expert Systems with Applications, 209(July). https://doi.org/10.1016/j.eswa.2022.118299

Bu, S.-J., & Cho, S.-B. (2023). Malware classification with disentangled representation learning of evolutionary triplet network. Neurocomputing, 552, 126534. https://doi.org/10.1016/j.neucom.2023.126534

Cartwright, A., & Cartwright, E. (2023). The Economics of Ransomware Attacks on Integrated Supply Chain Networks. Digital Threats: Research and Practice, 4(4), 1–14. https://doi.org/10.1145/3579647

CISCO. (2006). Configuración del Protocolo de tunelización de la capa 2 (L2TP) por IPSec. https://www.cisco.com/c/es_mx/support/docs/security-vpn/ipsec-negotiation-ike-protocols/14122-24.html

CloudFlare. (2022). ¿Qué es la inyección de código SQL? https://www.cloudflare.com/es-es/learning/security/threats/sql-injection/

Cybersecurity, N. (2016). ICS-CERT MONITOR. October. https://www.cisa.gov/sites/default/files/Monitors/ICS-CERT_Monitor_Sep-Oct2016_S508C.pdf

Duque, X. (2023). Ciberseguridad y estándares en el cuidado. El Tiempo. https://www.eltiempo.com/opinion/columnistas/ximena-duque/ciberseguridad-y-estandares-en-el-cuidado-columna-de-ximena-duque-765439

García Pineda, V., & Macías Urrego, J. A. (2021). Analysis of the Variables Leading to the Identification and Incorporation of Innovation Capabilities by Firms in the Colombian ICT Sector. Innovar, 32(84). https://doi.org/10.15446/innovar.v32n84.99867

Garcia-Holgado, A., Mena, J., Garcia-Penalvo, F. J., & Gonzalez, C. (2018). Inclusion of gender perspective in Computer Engineering careers: Elaboration of a questionnaire to assess the gender gap in tertiary education. 2018 IEEE Global Engineering Education Conference (EDUCON), 1547–1554. https://doi.org/10.1109/EDUCON.2018.8363417

Gazzan, M., & Sheldon, F. T. (2023). An Enhanced Minimax Loss Function Technique in Generative Adversarial Network for Ransomware Behavior Prediction. Future Internet, 15(10), 318. https://doi.org/10.3390/fi15100318

Gonzalez, E. (2023). Fortinet alerta de ataques contra organizaciones gubernamentales aprovechando una vulnerabilidad de día cero. Bit Life Media. https://bitlifemedia.com/2023/01/fortinet-ataques-dia-cero/

IBM. (2022). ¿Qué es el ransomware? https://www.ibm.com/mx-es/topics/ransomware

ISO. (2019). ISO 22301:2019 GUÍA DE IMPLANTACIÓN DE LA CONTINUIDAD DE NEGOCIO. https://www.nqa.com/medialibraries/NQA/NQA-Media-Library/PDFs/Spanish%20QRFs%20and%20PDFs/NQA-ISO-22301-Guia-de-implantacion.pdf

Karbab, E. B., Debbabi, M., & Derhab, A. (2023). SwiftR: Cross-platform ransomware fingerprinting using hierarchical neural networks on hybrid features. Expert Systems with Applications, 225, 120017. https://doi.org/10.1016/j.eswa.2023.120017

Kaspersky. (2022). Ransomware Attacks and Types – How Encryption Trojans Differ. https://www.kaspersky.com/resource-center/threats/ransomware-attacks-and-types

Kaspersky. (2023). ¿Qué es un botnet? - Definición. https://latam.kaspersky.com/resource-center/threats/botnet-attacks

Khalid Alkahtani, H., Mahmood, K., Khalid, M., Othman, M., Al Duhayyim, M., Osman, A. E., Alneil, A. A., & Zamani, A. S. (2023). Optimal Graph Convolutional Neural Network-Based Ransomware Detection for Cybersecurity in IoT Environment. Applied Sciences, 13(8), 5167. https://doi.org/10.3390/app13085167

Li, Q., Huang, H., Li, R., Lv, J., Yuan, Z., Ma, L., Han, Y., & Jiang, Y. (2023). A comprehensive survey on DDoS defense systems: New trends and challenges. Computer Networks, 233, 109895. https://doi.org/10.1016/j.comnet.2023.109895

Moreira, C. C., Moreira, D. C., & Sales Jr., C. de S. de. (2023). Improving ransomware detection based on portable executable header using xception convolutional neural network. Computers & Security, 130, 103265. https://doi.org/10.1016/j.cose.2023.103265

Nalinipriya, G., Balajee, M., Priya, C., & Rajan, C. (2022). Ransomware recognition in blockchain network using water moth flame optimization‐aware DRNN. Concurrency and Computation: Practice and Experience, 34(19). https://doi.org/10.1002/cpe.7047

NISS. (2021). 4th International Conference on Networking, Intelligent Systems and Security, NISS 2021. 4th International Conference on Networking, Intelligent Systems and Security, NISS 2021. https://scopus.bibliotecaitm.elogim.com/record/display.uri?eid=2-s2.0-85116889719&origin=resultslist&sort=plf-f&src=s&sid=dcd054c507aee22c3aa9c6a1c080c196&sot=a&sdt=a&s=TITLE-ABS%28ransomware+AND+networking%29&sl=36&sessionSearchId=dcd054c507aee22c3aa9c6a

Oakley, J. G. (2020). Cybersecurity for Space. Apress. https://doi.org/10.1007/978-1-4842-5732-6

Osorio, C. (2022). La precaria ciberseguridad de Colombia. https://elpais.com/america-colombia/2022-12-24/la-precaria-ciberseguridad-de-colombia.html

Red Hat. (2018). El concepto de la seguridad de la TI. https://www.redhat.com/es/topics/security

Rodriguez-Bazan, H., Sidorov, G., & Escamilla-Ambrosio, P. J. (2023). Android Ransomware Analysis Using Convolutional Neural Network and Fuzzy Hashing Features. IEEE Access, 11, 121724–121738. https://doi.org/10.1109/ACCESS.2023.3328314

Sibi Chakkaravarthy, S., Sangeetha, D., Cruz, M. V., Vaidehi, V., & Raman, B. (2020). Design of Intrusion Detection Honeypot Using Social Leopard Algorithm to Detect IoT Ransomware Attacks. IEEE Access, 8, 169944–169956. https://doi.org/10.1109/ACCESS.2020.3023764

Singh, J., Sharma, K., Wazid, M., & Das, A. K. (2023). SINN-RD: Spline interpolation-envisioned neural network-based ransomware detection scheme. Computers and Electrical Engineering, 106, 108601. https://doi.org/10.1016/j.compeleceng.2023.108601

Tandon, A., & Nayyar, A. (2020). Data Management, Analytics and Innovation (N. Sharma, A. Chakrabarti, & V. E. Balas, Eds.; Vol. 1042). Springer Singapore. https://doi.org/10.1007/978-981-32-9949-8

Tidy, J. (2023). El masivo ciberataque que amenaza con revelar los datos de empleados de grandes empresas del mundo, incluyendo la BBC. BBC. https://www.bbc.com/mundo/noticias-65834916

Urooj, U., Al-Rimy, B. A. S., Zainal, A. B., Saeed, F., Abdelmaboud, A., & Nagmeldin, W. (2024). Addressing Behavioral Drift in Ransomware Early Detection Through Weighted Generative Adversarial Networks. IEEE Access, 12, 3910–3925. https://doi.org/10.1109/ACCESS.2023.3348451

OJS System - Metabiblioteca |